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Abstract

In an e-Commerce marketplace there are usually many down-
stream tasks which have (relatively) less available resources
than the few mainstream priority tasks, like recommendation
or search. Examples of these tasks are product categorization,
counterfeit detection, forbidden products detection, package
size estimation, etc. Usually in these tasks the product titles
are an appealing feature since they integrate key aspects of the
product, are cheaply available and are easy to process. In this
setting it makes sense to invest in a few high quality models
that extract as much information as possible from the title and
are shared among many downstream tasks. The present work
explores the performance of different models to address dif-
ferent downstream tasks that are present in our marketplace.
We also propose an adaptation of a deep network architecture
from the Computer Vision field: “Bootstrap Your Own La-
tent” (BYOL), to learn product embeddings based on the title
and compare it to several industrial baselines as well as some
state-of-the-art supervised models. We found that although in
some cases neural network based encoders can be very useful,
in many scenarios the baselines given by shallower models
are still hard to beat.

1 Introduction
The e-Commerce environment has grown at fast pace in
recent years with new tasks and challenges to address.
Some key tasks, like product search and recommendation,
have large amounts of data available. However, some lesser
known but still relevant tasks have relatively less resources
available: smaller teams and annotated data. Examples are
counterfeit product detection, package size estimation, prod-
uct categorization, etc. In these scenarios, industrial applica-
tions started adopting organization-wide representations of
business entities (e.g. customers, products, etc.) via mecha-
nisms such as “Feature Stores” (Li et al. 2017).

Such representations tend to use features widely available
across tasks and domains. In this work we explore the use
of titles as the main feature for different supervised and self-
supervised methods on 6 different downstream tasks from
our marketplace. The product’s title contains a lot of infor-
mation in a limited space (e.g. brand, size, etc.).

We have 2 multiclass and 4 binary classification tasks
from our marketplace. We compare several industry base-
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lines as well as some state-of-the-art models, that can use
the title as the main feature for each of the downstream tasks.
In this study we explore FastText embeddings (Bojanowski
et al. 2016) and FastText supervised classifier (Joulin et
al. 2016), Meta-Prod2Vec (Vasile, Smirnova, and Conneau
2016) and a Bag-of-Words (with bigrams and trigrams) with
a Logistic Regression classifier; we also explore BERT (De-
vlin et al. 2018) and a Text CNN (Kim 2014).

As part of our experiments we adapted “Bootstrap Your
Own Latent” (BYOL) (Grill et al. 2020). In their work, the
authors use a Siamese Network where one of the networks
tries to predict the representation of the other using two aug-
mentations of the same entity (in the case of BYOL, an im-
age). In our work, the entity is an abstract product in which
a user is interested. In this scenario we use pairs of products
of the same browsing session of a user as the augmentation
for BYOL. Our hypothesis is that products of the same ses-
sions share similar properties useful in a transfer learning
scenario in downstream tasks. We use this in two settings, as
an encoder only later used with a linear classifier, and as a
pre-trained encoder, finetuned for each task.

Our findings show that even though the state-of-the-art
and deep models are usually the best in many tasks, the shal-
low and simpler models still are able to reach similar results
with the added advantage of being cheaper to train, requir-
ing less computational resources and even training data and
easier to setup and maintain in a machine learning pipeline.

This paper is structured as follows: §2 presents other
works in the area of product representation and also the
works we take inspiration to design the encoder model. §3
describes all the components in our experimentation; the
data, models, and architectures used for our experiments are
thoroughly explained in this section. §4 showcases the re-
sults of our experimentation and discuss the findings and in-
sights of it. Finally, in §5 we summarize our findings and
delimit our line of future work.

2 Background
When working on e-Commerce, there are some tasks that
usually receive more attention than others. Recommenda-
tion is perhaps the mainstream task in e-Commerce environ-
ments where there is a large body of work regarding the use
of information such as the shopping or the browsing session
of a user, like Prod2Vec (Grbovic et al. 2015) and Meta-



Prod2Vec (Vasile, Smirnova, and Conneau 2016). In partic-
ular, the use of metadata is also explored with the aid of deep
learning models via neural networks (Hidasi et al. 2016;
Zheng, Noroozi, and Yu 2017).

However, when it comes to other tasks, the body of work
is smaller. The main examples are the use of embeddings
inspired on Meta-Prod2Vec model for product categoriza-
tion (Xu et al. 2021) or using complementary relationships
in products for the same task (Xu et al. 2019). On the other
hand, many of these tasks do not count with manually la-
beled data and most of them depend on user reports that are
to be manually checked. Most importantly, in many cases,
the metadata available might be limited. This is why we are
interested in using a product’s title as the main feature.

Recent years have seen a dramatic increase of latent rep-
resentations, which are adequate to leverage information on
the language itself to transfer knowledge to specific down-
stream tasks where the data availability is more limited.
With the aid of architectures for training unsupervised lan-
guage models (Merity, Keskar, and Socher 2017) or the at-
tention mechanism (Vaswani et al. 2017), transfer learning
has seen an explosion of applications in Natural Language
Processing (Howard and Ruder 2018; Devlin et al. 2018;
Radford et al. 2018).

Having this in mind we explored a novel architecture
based on “Bootstrap Your Own Latent” (BYOL) by Grill et
al. (Grill et al. 2020). In their work they propose a way to
learn image embeddings for different downstream tasks that
avoids using negative sampling (and thus avoid finding hard
negatives) by learning over a Siamese network where only
one of the heads is trained while the other is updated using
a slow exponential moving average thus avoiding mode col-
lapse. We adapted it to use products of the same browsing
session as inputs.

3 Experimental Setup
3.1 Downstream tasks
We have 6 downstream tasks from our marketplace. Each
task is comprised of a set of products and their labels, which
depend on the task. Some tasks share the same set of prod-
ucts and only differ on the label. The main feature of each
product, and the one that most of the evaluated methods use,
is the title. The product’s title contains a brief description
of the product with some information such as brand, model,
measures, etc. It is usually written with a narrowed vocabu-
lary and simplified grammar. The same product can appear
with variations of the title given by different vendors.

As the language of our marketplace is Spanish, the titles
are normalized by stripping accents, removing stopwords
and punctuation, and lowercasing the text. On the case of
Meta-Prod2Vec only, and depending on the task, the prod-
uct can have a unique universal ID (even if the product is
sold by different vendors) and the category of the product.

Each task was split into train, test and validation subsets.
The validation was used for hyperparameter tuning and the
results reported in §4 are the ones of the test set.

In order to see the robustness of each of the models eval-
uated, we run experiments using different training sizes for

each task: 1,000, 2,500, 5,000, 10,000, 15,000, 25,000 and
the whole training dataset were used. We also run 5 experi-
ments per each combination of task, training size and model,
using different random samples and initialization of the data.
We report the mean and standard deviation of our results.

In order to have a distribution of the data that better re-
flects the dynamics of the marketplace, the splits are calcu-
lated based on a specific date, this means that those products
that are published before the date are part of the training
set, and those that are after that date are part of the valida-
tion and test set (i.e. we have 2 split dates). This is because
the products trends change over time and in some cases the
downstream task distribution can change as well.

Product Categorization A multiclass classification task
with the product category. Examples of categories are:
“cars”, “sneakers”, “cellphones”, etc. Usually this task is im-
portant for other downstream tasks because some of them
use the label of the category as a feature in order to improve
the results. Most of the times the label is given by the sellers
when they publish the product. In some cases it is revised by
a team, but in general term it is expected for a small propor-
tion of the labels to be wrong, specially for very specific cat-
egories. The dataset consists of 120,000 products distributed
in 986 categories. The distribution of the categories is ex-
ponential, where more than half of the products belong to
one of the 100 most common categories. The dataset was fil-
tered so that each of the categories has at least 10 products.
This was mainly done for research purposes since we are not
studying this downstream task only. There are 100,000 prod-
ucts for training, 10,000 for test and 10,000 for evaluation.

Product Identification A multiclass classification task
where the label is a unique identifier in a catalog of prod-
ucts, regardless of the vendor that is selling it. Examples of
a product are: “Galaxy S20”, “Galaxy S20+”, “iPhone 12”,
“iPhone 12 mini”, etc. The task is needed in order to offer
different options of the same product, by different vendors,
in order to give the user a better experience when select-
ing. It is specially useful for very popular products such as
phones, laptops and tablets. The labels of this data are care-
fully annotated since the catalog is used to group the prod-
ucts in order to show them to the buyer. It is a subset of the
“Product Categorization” dataset since not all the products
have a unique ID associated with them. It has 17,162 prod-
ucts with 1805 labels. It also has an exponential distribution,
with half of the products belonging to the top 500 labels.
Like with product categorization it was filtered so each la-
bel has at least 5 products associated with it. It has 10,000
elements for training, 3,581 for test and 3,581 for validation.

Counterfeit Product This is a binary classification task
that tells whether the product is a counterfeit, i.e. a copy of
an original product. An example are clothing products where
the product is sold as part of a brand when this is not the
case. The dataset is constructed based on users that report a
product as being “fake”. This is then validated by a human
annotator. The classification task consists in checking if a re-
port is valid or not (i.e. if the report is valid, then the product
is a counterfeit). The dataset has a total of 66,908 products.
The positive class is when the product is a counterfeit. There
are 48% of products in the dataset for the positive class (i.e.



counterfeit product) and 52% for the negative class (i.e. orig-
inal product). There are 40,144 products for training, 13,382
for test and the same amount for validation.

Forbidden Product This is a binary classification task.
The objective is to detect which products are prohibited to
commercialize in our marketplace (e.g. firearms). Similar to
the case of counterfeit, the dataset is constructed based on
the users that report a product and is validated by a human
annotator. The classification task checks if the report is valid
or not. The dataset has a total of 65,575 products, 22% of
them corresponding to a valid report (i.e. a forbidden prod-
uct) which is the positive class. There are 50,000 products
for training, 7,733 for test and 7,842 for validation.

Automated Logistics This is a binary task that predicts
whether or not a product can physically fit into a logistics
automation system. In the case of our marketplace, a product
is eligible for automated logistics if all the product dimen-
sions (length, height and width) are less than 70cm long. The
dataset has 69,946 products, with only 3% of the products
not being able to fit in the logistics automation system. This
is considered the “positive” class. There are 50,000 products
for training, 9,950 for test and 9,996 for validation.

Free Shipping A binary classification task that classifies
whether a product is eligible for free shipping in our logistics
network. This depends mainly on both the product and the
category. One of the most important features is the size of
the product, in terms of dimensions and weight, since larger
or heavier products usually need to pay a fee for transporta-
tion. There are other attributes as well that have an impact in
the decision of charging the transportation, e.g. if the prod-
uct is more expensive it usually brings the extra benefit of
a free shipping. Some products, like batteries, need to pay a
fee as an insurance. As it is the case for Automated Logis-
tics dataset, this dataset is unbalanced as well. It has 69,078
products, with only 3% not having free shipping. Similar
to the other case, the positive class represents the products
non eligible for free shipping. There are 50,000 products for
training, 10,057 for test and 9,021 for validation.

3.2 Users’ Browsing Session Data

There are 3 methods that require an unsupervised pre-
training step: MP2V, FastText embeddings and the “Boot-
strap Your Own Latent” embeddings. In order to pre-train
these models we use browsing sessions of users in our mar-
ketplace. These browsing sessions are defined by the prod-
ucts that a user “visits” (i.e. that it clicks to check the details)
within a time window. Formally speaking, given a sequence
of products s = (p1, ..., pn) where pi is a product and T (pi)
is the timestamp the user accessed the product, we have that
T (pi+1) − T (pi) ≤ T for a short fixed time window T in
minutes. The products of a browsing session consist of the
title, the category and, in some cases, the product unique ID
(see “Product Identification” task). The product titles were
normalized like the ones in the downstream tasks. There are
7.6 million sessions using a time window T of 5 minutes and
a total of 2,132,039 different products.

3.3 Machine Learning Models
We explore 4 shallow industry baselines, 2 deep learning
models, and 2 versions of the model pre-trained based on
the architecture of “Bootstrap Your Own Latent” (BYOL), a
linear evaluation and a finetuned evaluation.

Bag-of-Words + Logistic Regression (BoW) The learn-
ing rate, L2 regularization parameter and the size of n-grams
used in BoW were obtained via the validation data.

FastText Supervised It is the text classification tool, with
the autotune parameter over the validation data, which runs
a grid search during 5 minutes per experiment.

FastText Embeddings A FastText model trained with the
titles of the products in the users’ browsing session data
(§3.2). For each task we use the trained model to encode the
products’ titles, and use these embeddings to train a logistic
regression classifier similar to the BoW one.

Meta-Prod2Vec (MP2V) A model trained with the users’
browsing session data (§3.2). The metadata available is the
product ID, the category and the title. Depending on the task,
the embeddings were trained with all the metadata, or part
of it. For “Product Categorization”, we removed the cate-
gory and only train with the product ID and title, and for
“Product Identification” the model was trained using only
the category and the title, without the product ID. We use the
trained model to encode the products of each task and use a
Logistic Regression classifier with the embeddings, similar
to FastText embeddings described before.

BERT We finetune BETO (Cañete et al. 2020), a BERT
model pre-trained for Spanish. We use the Adam optimizer
where the number of epochs, learning rate and regularization
parameters were obtained with the aid of the validation data.
The validation data is also used for early stopping the train-
ing of the model before it reaches the final epoch if there is
no improvement after 5 epochs.

Text Convolutional Neural Network (CNN) It is used
in combination with a word-piece tokenizer (Schuster and
Nakajima 2012). The tokenizer, which has 32,768 subto-
kens, was trained on the products’ titles from the users’
browsing sessions data. The model was trained with an
Adam optimizer and the parameters were set via validation
similarly to BERT. This model is the base encoder for the
BYOL model (§3.4). The architecture has 4 kernels of size
2, 3, 4, 5. Each kernel has 1024 filters and a global max pool-
ing operation that is concatenated to a vector of size 4096
and then projected to a vector of dimension 256.

3.4 BYOL for Pre-training
We use “Bootstrap Your Own Latent” (BYOL) (Grill et al.
2020) as a pre-training task for the Text CNN encoder. The
objective is to minimize the distance between encoded prod-
ucts’ titles in the same session. Given an encoding function
fθ we use the browsing session data to calculate the param-
eters θ. After pre-training fθ, we can add a linear layer for
classification on each downstream task: Given the task data
S = {(x1, y1), ..., (xn, yn)}, where xi is a product and yi is
the label, we either train that layer for linear evaluation, or
finetune the linear layer plus the encoder fθ.

Figure 1 shows the model architecture. We switch the use
of image augmentations with pairs of products in a session.



Figure 1: The model’s architecture is based on BYOL (Grill et al. 2020). The model receives as input a pair of products pi and
pj (represented by their titles). One product is projected through the online network until the projector value qθ(z) is obtained.
The other product is projected through the target network until the value z′ is obtained. The model is trained on the weights
θ by minimizing the objective function LBY OL, which is the distance between qθ and sg(z′) (where sg means stop-gradient
operation).

The pairs are obtained combining all the pairs in each brows-
ing session. The products are represented by the title. The
encoder, fθ, is the same Text CNN defined in §3.3.

The BYOL model consists on two paths: the online net-
work and the target network. The online network is defined
by a set of weights θ and is comprised of 4 stages: an em-
bedding lookup tθ, a representation encoder fθ, a projector
gθ, and a predictor qθ. The target network has a very simi-
lar architecture to the online network, except that it doesn’t
have the predictor qθ. It also has a different set of weights ξ.
The weights of the target network are obtained by a slow ex-
ponential moving average of the online parameters θ, given
a target decay rate τ ∈ [0, 1]. After each training step the
weights ξ are updated: ξ ← τξ+ (1− τ)θ. Both θ and ξ are
initialized to the same values when creating the networks.
After training the model, we are interested in the pre-trained
encoder fθ ◦ tθ. The rest of the model is discarded.

BYOL trains the online network by minimizing the dis-
tance between the prediction qθ and the projection z′ of the
target network. The stop-gradient sg is important to avoid
optimization over the weights ξ which would cause mode
collapse (Chen and He 2020). The online network’s predic-
tion qθ(z) is compared to the target network’s projection z′

and the error is the L2-normalized loss between the vectors:

LBY OL = 2− 2 · ⟨qθ(z), z′⟩
∥qθ(z)∥2 · ∥z′∥2

(1)

Equation 1 only refers to one way of the product pair
pi, pj . The symmetric loss is obtained by swapping the in-
puts of the network. The pre-training was done using 315
million pairs that were obtained from the 7.6 million users’
browsing sessions. The architecture of the encoder is the
same as the Text CNN model. The projection encoder gθ is
a multi-layer perceptron that takes the 256 dimensions and
expands it to a hidden layer of size 1024, followed by batch
normalization, rectified linear unit and a final linear layer of
size 1024. The predictor qθ has this same architecture. The
model was pre-trained with the parameters of Grill et al.

We use the encoder in two settings: linear evaluation and
fine-tuning of data. In the former, BYOL is an encoder only,

we train a Logistic Regression classifier in the same way it
was done for FastText Embeddings and MP2V. For the latter,
we fine-tune the model training it like for Text CNN.

4 Results and Discussion
Table 1 shows the results of our experiments. Each horizon-
tal section of the table corresponds to a task, with the task
name and metric reported in the first column. The second
column shows the names of the models. There are 7 columns
corresponding to the different sizes of training sample. The
last column represents training with all the training data for
that task (§3.1). For the case of Product Identification, the
maximum training data available was 10,000 (represented in
the “All Data” column for the task). For the multiclass clas-
sification tasks (Categorization and Identification) we report
the F1-Score Macro Average over all the classes. For the
binary classification tasks we report the Average Precision
Score, which is an approximation of the area under the pre-
cision recall curve.

The table shows us that: 1) BERT has the best perfor-
mance overall across different tasks, leading 3 of the 4 bi-
nary tasks when all data is used; 2) Bag-of-Words (BoW)
has a surprising performance being a close top-3 in all tasks,
regardless of training size; 3) BYOL performance’s excels
in the tasks of product categorization and identification; 4)
MP2V relies on the metadata, particularly the category, and
when it is not available, e.g. in the categorization task, the
method collapses; the extra information is not enough to
boost its performance over other methods, except for very
specific scenarios; 5) FastText supervised is somewhat ir-
regular in its performance since for some experiments it col-
lapses; 6) this is not the case for FastText embeddings which
show an overall good and uniform performance across tasks;
7) the pre-training of the Text CNN encoder via BYOL is
clearly superior over training it from scratch.

The performance of BYOL in the first two tasks (Catego-
rization and Identification) hints that pairs of products seen
by a user in the same browsing session are either the same
product or a slight variation of the product within the same



Train Size 1000 2500 5000 10000 15000 25000 All Data
Task Model
Categorization BoW 9.8±0.26 17.5±0.75 25.7±0.55 35.4±0.66 41.8±0.41 49.5±0.46 66.7±0.0

FastText Sup 3.0±1.02 3.0±1.34 3.1±1.58 3.5±1.56 3.8±1.77 1.3±0.04 1.5±0.0
F1-Score FastText Emb 12.8±0.5 20.7±0.59 28.6±0.17 37.8±0.59 43.8±0.5 51.0±0.81 64.8±0.0
Macro MP2V 8.2±4.61 3.3±7.38 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Average BYOL Emb 15.0±1.43 25.6±0.87 36.0±0.56 46.0±0.63 50.9±0.86 56.7±1.28 68.2±0.08

BYOL 12.5±0.68 22.6±0.68 33.6±0.86 45.3±1.07 48.9±3.24 52.6±2.65 63.9±0.8
BERT 13.0±0.71 24.4±1.19 32.0±1.88 40.9±4.02 46.4±2.27 52.8±1.21 65.4±0.65
Text CNN 6.1±0.35 11.2±0.46 11.5±5.31 18.9±2.37 23.6±3.23 31.9±1.88 58.8±1.48

Identification BoW 18.2±0.35 39.9±0.5 59.5±0.61 76.8±0.0
FastText Sup 6.7±2.45 11.1±2.23 15.1±3.75 23.0±1.07

F1-Score FastText Emb 16.8±0.52 36.0±0.29 54.4±0.7 73.5±0.0
Macro MP2V 11.3±0.33 25.1±0.24 32.6±9.47 40.5±2.21
Average BYOL Emb 2.8±1.13 38.7±0.56 57.6±0.97 74.3±0.19

BYOL 19.5±0.49 43.1±0.68 64.5±0.5 80.4±0.34
BERT 7.0±9.44 7.8±17.53 12.2±27.28 15.7±35.11
Text CNN 17.3±0.16 26.4±14.6 51.6±1.61 66.5±0.11

Counterfeit BoW 88.0±0.4 90.1±0.22 91.6±0.12 93.1±0.15 93.9±0.11 95.1±0.11 96.1±0.0
FastText Sup 85.0±3.81 89.9±0.14 91.3±0.18 92.7±0.15 93.6±0.09 94.9±0.21 96.4±0.04

Average FastText Emb 86.3±0.22 87.4±0.13 87.9±0.19 88.4±0.1 88.5±0.05 88.7±0.04 88.8±0.0
Precision MP2V 84.3±0.48 85.4±0.22 86.2±0.18 86.7±0.17 86.8±0.1 87.0±0.09 87.0±0.0
Score BYOL Emb 81.9±0.97 87.9±0.37 89.3±0.05 89.9±0.05 90.1±0.1 90.3±0.07 90.4±0.0

BYOL 88.5±0.32 90.9±0.16 91.8±0.21 92.8±0.17 93.6±0.23 94.3±0.17 95.4±0.09
BERT 88.1±0.88 89.6±1.44 91.2±0.47 93.2±0.15 93.9±0.34 95.3±0.17 96.5±0.0
Text CNN 87.2±0.46 88.9±0.79 90.7±0.46 91.8±0.23 93.2±0.73 94.0±0.28 95.2±0.04

Forbidden BoW 27.3±1.45 32.7±0.61 36.7±1.12 39.1±1.46 40.6±1.23 42.8±1.31 45.4±0.0
FastText Sup 10.7±2.1 22.9±10.39 30.2±9.72 27.3±13.26 28.4±16.23 24.1±16.58 10.7±1.16

Average FastText Emb 34.2±1.12 36.3±1.58 38.5±0.82 39.6±0.71 39.6±0.53 40.0±0.22 40.1±0.0
Precision MP2V 27.0±0.72 30.9±1.11 30.9±0.53 29.1±1.76 26.6±7.3 30.7±1.56 30.8±0.0
Score BYOL Emb 29.0±1.38 33.2±0.36 34.6±0.65 35.2±0.46 35.7±0.39 36.0±0.35 36.0±0.0

BYOL 34.7±0.82 38.1±1.14 41.3±0.94 42.2±1.35 43.9±1.47 47.0±2.55 50.9±0.08
BERT 33.6±2.4 39.7±1.64 43.3±1.25 47.7±1.59 50.3±1.3 52.5±1.61 51.2±0.0
Text CNN 27.7±3.38 32.3±2.58 36.7±1.48 40.0±1.3 38.5±1.27 43.1±0.75 46.4±0.0

Logistics BoW 5.8±1.05 8.0±1.47 11.5±2.4 15.4±3.22 18.9±1.6 23.2±1.8 27.1±0.0
FastText Sup 3.1±0.13 3.2±0.04 6.8±3.4 10.8±5.14 12.6±5.83 21.0±2.1 27.1±0.5

Average FastText Emb 7.4±0.92 8.8±0.29 11.4±0.91 13.9±0.43 16.3±0.33 17.8±0.54 19.8±0.0
Precision MP2V 8.4±1.57 11.5±1.26 14.1±1.11 15.6±0.77 17.1±0.62 18.1±0.77 19.0±0.0
Score BYOL Emb 5.0±0.74 6.7±0.88 9.4±0.52 11.8±1.0 12.7±0.83 13.9±0.42 14.8±0.0

BYOL 3.7±0.11 7.9±1.49 10.5±2.25 13.9±3.67 16.5±1.04 17.8±1.77 25.7±1.21
BERT 5.0±0.77 8.7±1.56 11.3±1.96 14.6±3.35 17.7±1.09 23.5±1.82 28.2±0.0
Text CNN 4.6±0.72 5.6±0.81 7.1±0.96 8.4±1.57 9.2±0.79 12.0±1.88 15.3±0.49

Shipping BoW 11.3±2.61 21.4±2.04 30.4±2.36 37.5±2.04 44.6±1.99 51.8±1.84 61.9±0.0
FastText Sup 3.5±0.24 11.2±7.25 16.1±11.13 26.5±12.4 38.6±2.85 43.2±3.72 53.5±1.59

Average FastText Emb 15.5±3.66 22.0±2.86 26.3±1.84 29.9±0.89 32.4±1.19 35.3±0.65 37.3±0.0
Precision MP2V 18.0±4.86 27.5±1.42 32.0±2.54 34.2±1.34 35.9±1.14 36.6±0.94 37.6±0.0
Score BYOL Emb 6.8±1.1 8.0±1.77 16.4±2.09 21.2±2.45 24.0±2.13 26.5±1.32 28.5±0.0

BYOL 3.1±0.26 17.5±2.97 25.2±3.95 33.7±2.71 39.4±2.4 45.1±2.25 56.9±1.89
BERT 7.9±1.79 16.2±1.98 25.8±3.34 36.3±4.82 42.7±1.95 51.4±2.13 60.5±0.0
Text CNN 4.9±0.92 8.9±1.2 14.6±2.62 20.8±3.34 25.0±4.38 32.0±1.84 40.0±0.0

Table 1: Experiments Results: The table is divided horizontally and vertically by lines. Each group between horizontal lines
represents a group of experiments for a task. Each row within that group has the results of each model. The first column has the
name of the task on top and the metric used to evaluate that task in the middle. The second column has the name of the model
that corresponds to the results in that row. Each column with a number on top has the results for that training sample.

category. This also indicates that the chosen “augmentation”
is good for this type of task, but not necessarily good for oth-
ers. The finetuned evaluation still lags behind BERT. These
limitations could be addressed with other kinds of augmen-
tations or larger encoders with attention mechanism.

The results show that BoW with Logistic Regression is an
excellent candidate in a text classification setup, much bet-
ter than FastText supervised model which showed extremely
poor performance in some scenarios, even using its autotune

mechanics. BoW rivals BERT’s performance in some cases.
FastText embeddings with logistic regression show good re-
sults (and more consistency than the supervised version), al-
though not as good as the ones shown by BoW. The problem
with BoW is the sparse nature of the encoding making it
much harder to be complemented with other features.

There are only 2 scenarios where the size of training data
has impact on the performance of a model making it much
better than the others: logistics and shipping with small



amount of training data. In these cases MP2V is better. This
hints that MP2V embeddings better captures the product’s
size with limited data.

5 Conclusions
This study explores different ways to encode a title and use it
for downstream tasks. We evaluate several models for many
text classification tasks. In addition, we adapted an architec-
ture for pre-training an encoder for downstream tasks that
appear in the daily challenges of an e-commerce scenario,
based on the work by Grill et al. (Grill et al. 2020).

The proposed model, BYOL, shows very good results for
two of the tasks, which are related, and this is a clear con-
sequence of the selected method for “augmentation”. This
opens the possibility for future research on what type of aug-
mentations are worth exploring for certain types of tasks.
This could also be explored by adding extra parameters in
the objective function, e.g. the downstream tasks objectives,
making it a multi-task learning model. Also, the comparison
with a Text CNN trained from scratch showed us that the
BYOL architecture is feasible for pre-training.

Depending on the task, different models can have differ-
ent advantages. Even if BERT was the leading model in most
of the tasks, it comes at a cost of pre-training, finetuning and
even inference, that none of the other models have. BoW
with logistic regression is a hard to beat baseline that we
should always check, and the use of FastText embeddings
for representation shows very good and balanced results.
Meta-Prod2Vec can vary greatly depending on the task, and
may need a non linear model for better performance. While
BYOL, with the correct choice for augmentation and en-
coder can be a good alternative.
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Cañete, J.; Chaperon, G.; Fuentes, R.; and Pérez, J. 2020.
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